EZScar 2.00-R7 Doc

Summary
EZScar is an attempt to take the mystery out of scar programming, either for single-user or multi-user. It can be used to just set up a rule that, when a point is taken, the players are given a tank. Or you can use it to build highly complex campaigns.

This version of EZScar is a cross between EZScar v1 and v2. V1 centered around the “g_GamePlay”, g_WaveActions, and g_Bonus arrays to set up the game. Version 2 is moving towards using the “CreateRule”, “DoItNow”, and “DevineVPlayer” type definitions. The version 2 functionality provides a lot more control. For Legacy purposes, and because most games using this version of WZScar will use it, some documentation for the old style system is at the end of this document.

There are two main functions of EZScar. You can use it as a stand-alone modifications to your game through triggered events, or you can use the “wave control”. The Wave control system uses “virtual players” (vplayers). These players will be given a base, and will spawn bad-guys at that base until it is destroyed. Then all the bad-guys spawned at that base will vanish. You can have multiple vplayers, all being controlled by one AI player. Thus, you can have a seven human-player game, with all seven humans on the same side, and the opposing forces can still over-run you… Because the VPlayer capability is currently controlled by the EZScar v1 system, information about setting that up is in that area of he documentation.
Index:
1EZScar 2.00-R7 Doc

1Summary

1Index:

2EZScar 2.0

2Creating a new map with

2Debugging

3The Basics

3Keywords

5Triggers

6Actions

9Modifiers:

10Computed Fields

12Variables

12EZScar 1.0 documentation

12Main Variables:

15Wave Actions

16g_Bonus

17The End Game Function

17Custom races:

18Custom Buildings:

18Custom Squads/Vehicles

21Program Notes In Progress

EZScar 2.0

Creating a new map with

We will not tell you how to create a map using the map editor. There are lots of helpful documentation on how to do that. This document starts off once you have your map created. This is not a tutorial, this is the documentation. Basically, this gives you syntax and infrastructure. The best way to get a “tutorial”, unless someone write one up, is to look at someone’s EZScar map scar file and look up what they do in this document.

Most of the time the easiest way to use this is to take an existing map’s scar file and copy it. You want to end up with a filename that is “YourMapName.scar”, where you already have a “YourMapName.tga” and “YourMapName.sgb”. If you have the template file available to you, copy this and use it instead of snarfing it off someone else’s map. It has a better chance of not having problems with it.

Or, you can make the template file by copying the top portion from the EZScar file and putting it into the “MyMapName.scar” file. There is a “CUT HERE” mark that tells you how far down you should copy. Then, uncomment the “import EZScar” line near the top of the file.

Now you are ready to customize your map.
Debugging

As you develop your program, you will end up getting various errors. Don’t worry. That is normal. If you are going to deal with scar programming, you will end up facing Scar errors of some sort. Most of them will be because you are trying to do something EZScar was not designed to do, you have mis-typed something, or there your infrastructure is goofed.
The main thing you need to know is how to read your errors. While loading, or while the game is playing, press ctrl-shift- ~ to get to the game console. If you are in-game, it usually helps to have pressed the pause button beforehand so messages do not keep scrolling up.

Once you are in the game console, you can use the page-up and page-down keys to navigate through your messages. Most of what you see is standard stuff. The EZScar script tells you a fair bit about what it is doing, which will often help you diagnose what went wrong.

If the error was in a “teleport” area, you can guess that your “teleport” rule has a problem with it. If it is in a “scatter” area, look at your Scatter rule. Get the picture?

As you make changes, there are a few short-cuts to make development easier.

The easiest way to restart a game is to type “restart” on the console

Type “cls” to clear off old messages. It keeps you from getting confused which error caused what.
The Basics

EZScar 2 is built on the trigger/event concept. A trigger tells when an event could happen. It does not necessarily say that it will happen at that instant. For example. The trigger, “Always” means that the event associated with it is always active. If our event was, “Teleport”, it does not mean that the entire squad gets teleported to the destination. What it means is that the teleport capability for a point has been activated. The teleport command uses a marker which has been placed on the map through the map-editor, with the marker having had a “proximity” set. Whenever a squad (matching the player conditions) walks into the teleport circle, they are teleported. That is, so long as the teleport rule is active.
For example. If, instead of “Always” for our trigger, we used something like, { “PointTaken”, “Player”, “Relic”}, then the teleport is only enabled after the relic has been taken. (In this case, we are assuming that the relic has been added to the map through the map editor, and has been put in an egroup named “Relic”) So, before the “Relic” point is taken, you can walk through the teleport area with no effect. But as soon as the “Relic” point is taken, the teleport command will teleport any players matching the criteria to the destination location.
Scar is built on the Lua 5.0 programming language. One of the strengths of Lua it’s use of “tables.” A table is something surrounded with squirelly brackets { }. Lua allows any variable to be a table or individual variable. What this means for EZScar is that you can substitute basically anything with a list of anything.

To continue to use our example. If we wanted to make sure that multiple points were taken before the teleport takes effect, we could do so with. { “PointTaken”, “Player”, { “Relic”, “Point1”, “Point2”}}. Notice that, to turn it into a list, we put the squirrely braces around it. This simply makes it so all three points need to be captured before the Teleport will take effect.
Most triggers and actions will work with adding multiple points, players, entities, etc. For the most part, if it seems to make sense that you might be able to add more than one thing, you can try it. Most of them should work.

There are three main commands:
DoItNow({action})
DoItNow is for use during NIS scripts or at the beginning of the game. To do it at the beginning of the game. Put it in the “localinit” function provided for this purpose.
CreateRule ({trigger}, {action})
CreateRule generates a trigger/event pair. For the entire duration of the game, the trigger will be checked, and if the conditions are found to be true, then the events will be triggered.
randomize_groups(grouplist)
This is a command to be used in the “localinit” function provided. It is used to help provide randomization to a map. What you do is have multiple entities (usually critical points, relics, or strategic points), each one in an egroup. For Example, {“Relic1”, “Relic2”, “Relic3”, “Relic4”}. You have some rules which are triggered off these ({PointTaken”, “player”, “Relic1”). The randomize_groups command whill shuffle which relic egroup is affected by the rule. This allows you to have maps that, while similar every time you play them, have an element of randomness.
Keywords

	Keyword
	Possible values
	Discussion

	Action
	An action can be a single item [“EndGame”], or a command [{“Scatter”, ”player1”, “marker1” }] or a series of multiple actions.
	An event that can occur that may contain conditionals (teleport players near a marker, give a squiggoth to the owner of a point, etc)

	Blueprint
	Any squad or building blueprint
	A blueprint is defined by the DOW game and any mods which are currently in effect. It is the name of the squad or entity that is needed to create one of that squad or entity.
If the first character of the blueprint is the ~, it will do a match of all known blueprints (from the EZ-Scar internal blueprint list) that contain that in the name. For example: “~_hq” will match all headquarters buildings from all races. “~thermo” will match all thermo-power plants from all races.

	Eblueprint
	
	An entity blueprint

	Egroup
	Set during map editing and while spawning buildings during game-play
	A named entity (building/decoration) group. Named groups can be created from the map editor. When spawning buildings, you can give those buildings a group-name through which they can be referred to later.

	Marker
	
	A marker of type basic_marker which preexists on the map. Markers cannot be added during game-play

	Player
	player[1..8], player, players, enemy, team[1..8], vplayer[1..20], all, any, anyone,
{“OwnerOf”,egroup|sgroup}
	Player1 would refer to the first player on the map as set when the map started.

Team1 refers to the team1 as set when the map started.

“player”, “players”, and “humans” are the same when referring to triggers and events. They refer to a non-enemy (assuming all the humans are on the same team)
Any, anyone, and all, are also identical, they mean the rule applies to human and AI alike.
Vplayers are the virtual players which are defined in the scar file

You can give something to one particular player who owns something in particulad {“OwnerOf”, egroup/sgroup}

	Race
	Chaos_marine_race, space_marine_race, elder_race, ork_race, necron_race, Sisters_race, Dark_Eldar_race, tao_race, guard_race, custom1, custom2
	These are the in-game race names used internally to the DOW program. There are two custom races that may be used, which can contain mixes of buildings and mixes of squads.

	Sblueprint
	
	A squad blueprint

	Sgroup
	Set during map editing and while spawning squads during game-play
	A named squad (vehicle/squad) group. Named groups can be created from the map editor. When spawning squads, you can give them a group-name through which they can be referred to later.

	Trigger
	A trigger can be one item [“Always”], a command [{“PointTaken”, “player1”, “mypoint”], or a series of commands.
	A condition that needs to be met before the action will be checked for

	Intel
	An intel function or a conversation table in the form of { speaker = ACTOR, message = ucs_number }
	An intel function is a function inside of which a series of NIS or intel commands happens.

Triggers

	Command
	Parameters
	Discussion

	Compare
	Value1, operator, value2
	Compare two values. For example, you might want to use:

{“Compare”, { “PlayerRace”, “player1” }, “=”, “eldar_race” }

Which would compute the race of the player1 player and trigger true if it is true. There is an additional parameter, “operator” which determines if one uses an “and” or “or” operator when dealing with lists. For example:

{“Compare”, { “PlayerRace”, “player1” }, “=”, { “eldar_race”, “chaos_race”, “ork_race”}, operator=”or” }

Will trigger the event if the player is eldar, chaos, or the orcs.

	EgroupDestroyed
	Egroup
	The egroup once existed with something in it, and no longer has anything in it.

	EgroupExists
	Egroup
	The egroup exists and has something in it

	EProx
	Player, {egroup, sgroup, marker}, { eblueprint }
	If an entity is in proximity to something. Use this to see if someone has built a (whatever) near something. For example: CreateRule ({ “EProx”, “player1”,”titan-marker”,”~thermo” }, { “ChangeOwnership”,”player1”,”titan”}) This example will change the ownership of the titan cannon (if one has already made an entity group in the mission editor) to player1, if player1 builds a thermo-power plant (of any race) within the proximity of the marker, “titan-marker”

	PointTaken
	Player, egroup
	Is true when any point in the egroup has been captured by the player/team specified.

	Proximity
	{Player,sgroup}, {egroup, sgroup, marker}
	Is true when a squad from the player is in proximity with the given egroup, sgroup, or marker. You can use “true_if_empty=true” if you want the proximity to return true if that player/sgroup does not exist.

	SgroupDestroyed
	Sgroup
	The sgroup once existed with something in it, bit no longer has anything in it. You can add: times_to_fire=10 to have the rule fire off ten times after the squad is destroyed. Otherwise it fires off once.

	SgroupExists
	Sgroup
	The sgroup exists and has something in it

	WaveIs
	“OPERATOR”,NUMBER
	Operators are: “<” ,”>”,”before”, “during”, and “=”. It returns true if the wave is bigger than, less than, or equal to the number specified. The “Before” wave number is a special case. It does not mean “less than” wave, but rather that the wave has started, but it is in the “wave delay” phase. “During” the wave number means that it is the wave, and squads for that wave have already started to spawn.

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Actions

	Command
	Parameters
	Discussion

	AddVPlayer
	LOCATION,RACE
	Add a virtual player of type “RACE” at the given location and spawn them. If there is already a VPlayer at that location, they will not spawn. You can use some of the following modifiers: wavetype=”wave|trickle|wave_trickle” difficulty=”1|2|3”, scap=[squad cap], vcap=[vehicle cap], timer=[timer between trickles/waves] For more information on these modifiers, see the section on scar1 and virtual players

	Base
	Player, Type, Race, Location
	The type should be something like: regular, reverse, or spread

The location should be a marker-name if the base-type is “regular” or “reversed”. If the base-type is “spread” it should be a number, and there should be marker-names on the map telling where the various buildings go.

	Building
	Player, where-marker, eblueprint, egroup
	Spawn a building at the “where-marker” and put it in the egroup named. If multiple players are given or inferred, the building will be given to each of them. If multiple where-markers are specified, the item will spawn in each location separately (once the previous squad has been killed). The spawn-location can be randomized.
There is a method=”kill|change|coexist” option which allows you to determine the fate of the entities belonging to one player if another player takes the point. “Kill” will kill the entity of the first player who took the point. “Change” will change the ownership of the current squad to the player who now owns the point. And “coexist” will allow both players to retain the squads they have been given.

	BuildingDoDefault
	EGROUP, GROUP
	Many buildings have a default action. Like “shoot”. This commands the building to do the default action to the specified entity or squad group.

	ChangeOwnership
	PLAYER,GROUP
	Change the ownership of GROUP to PLAYER. Use “none” or “world” to remove ownership of the item.

	Command
	{Player/Sgroup/Egroup}, command, target
	Command an egroup, sgroup, player (commanding a player affects all their squads), or team (a team will affect all the squads for all players on the team). The target should be an egroup, sgroup, or marker. The target can be empty (“”) if the command should be done to the squad itself. The commands are special SCAR names, and should not have quotes around them. Squad commands are:

SCMD_DefaultAction, SCMD_Move, SCMD_Stop, SCMD_Destroy, SCMD_BuildStructure, SCMD_Capture, SCMD_Attack, SCMD_ReinforceTrooper, SCMD_ReinforceLeader, SCMD_UpgradeTrooper, SCMD_CancelReinforcement, SCMD_AttackGround, SCMD_Melee, SCMD_Stance, SCMD_StanceMelee, SCMD_AttackMove, SCMD_Jump, SCMD_Ability, SCMD_Attach, SCMD_Detach, SCMD_Patrol, SCMD_ReinforceTrooperOverwatch, SCMD_UpgradeTrooperOverwatch, SCMD_Repair, SCMD_Load, SCMD_Unload, SCMD_Rampage, SCMD_UnloadHere, SCMD_DeployWeapon, SCMD_UndeployWeapon, SCMD_HarvestOn, SCMD_HarvestOff, SCMD_HarvestSpawnSlotA, SCMD_HarvestSpawnSlotB, SCMD_HarvestSpawnSlotC, SCMD_DirectSpawn, SCMD_DirectSpawnRepeat, SCMD_DirectSpawnSetRally, SCMD_Cannibalize, SCMD_BurrowToggle, SCMD_Entrench, SCMD_Uproot, SCMD_LightningFieldDischarge, SCMD_MeleeDance

Entity commands are:

CMD_DefaultAction, CMD_Stop, CMD_Destroy, CMD_BuildSquad, CMD_CancelProduction, CMD_RallyPoint
Example: { “Command”, “mysquad”, SCMD_Attack, “enemysquad” }

	CreateEGroup
	PLAYER, BLUEPRINT, EGROUP
	Create an entity group named “EGROUP” containing all the players “BLUEPRINT”. You can then specify the groupname “EGROUP” for things like “despawn”, etc.

	CreateSGroup
	PLAYER, BLUEPRINT, SGROUP
	Create an squad group named “SGROUP” (you specify name) that contains all the “BLUEPRINT” (you specify a blueprint that exists) for the players specified. You can then use the squad-group name in place of many of the “player” specifications for many of the rules. For example, you can teleport everything in one group. You can scatter them, despawn, summon or destroy them. Amongst other things

	Damage
	{Player/Sgroup/Egroup},{Marker}, amount
	The Marker is optional. Do minor damage to the Player/sgroup/egroup which is within the proximity of a marker. If the marker does not exist on the map, or no marker was given, then the sgroup or egroup specified is damaged. You can specify fx=”zap” to make it appear as if an electrical shock goes through the group. You can also have: morale=true to instantly break the morale of all squads affected.

The amount specified is a “percent” (a number between 0 and 1)

	DeSpawn
	GROUP
	DeSpawn a sgroup or egroup. They will still exist, but cannot be used while despawned. They can be respawned at a later date. SGroups can also be summoned so that they reappear in a new location. You can specify fx=”zap” to make it appear as if an electrical shock goes through the group.

	Destroy
	{Egroup/Sgroup/Player}, Marker
	Destroy the entities, squads or players. The marker is optional. If a marker given, it will destroy the squads or entities from within the given groups, or owned by the specified player in proximity to that marker. The range of proximity is specified in the map editor.

	DoIntel
	{ intel }
	Queue up intel scripts. These are “player talking” scripts. If you have multiple scripts in a table, they will be queued up in the order listed.

It can also accept a conversation table.

	EndGame
	
	Start the end of game sequence.

	FOW
	On/Off, {MARKER, SGROUP, EGROUP,”All”}
	This turns off the FOW of war for an area. When turning it off for a marker, the “proximity” radius (set in the map editor) is what is revealed. You can turn ON the Fog Of War across the whole map, but you cannot turn it on for a given entity, squad, or marker. But, when the FOW rule that turned it off stops being “true” then the FOW will vanish for that squad, entity, or marker. For example: {“SGroupExists”,”Commander”},{“FOW”,”off”,”mymarker”}

Will have the FOW lifted from the mymarker until the time that “Commander” dies. Then it will vanish.

	Function
	Function
	Call a user-defined function. See the “user defined function” section below for more details

	Grant
	Player, what, amount, name
	Grant requisition/power decrease/increase, or squad/vehicle cap increase/decrease.

What can be one of “req”, “power”, “ork”, “resource”, “scap”, “vcap”, “cap”, or “research”.

“Resource” will affect both power, requisition, and ork-pop. “cap” will affect both squad and vehicle cap.

The optional parameter method=”” will allow you to change how the change occurs. Method can be one of “add”, “sub”, “set” or “revoke”. “Add” will increase/decrease by the amount specified.

Name is only used when setting or increasing squad-caps. A named cap increase can be revoked without affecting a different “increase”. For example, you can have one called “Relic1” that gives an increase of 5 squad_cap. You can then revoke “Relic1”, and it will remove that bonus without affecting other bonuses currently in effect.

Granting the research of “all” will grant all the research known to the ez-scar program. This will probably not include any mods you may have active, and may also not include new research from some game-versions.

Be sure to use a delay=30 or limit=1 or use this in a “DoItNow” instead of Create Rule.

	JumpToWave
	NUMBER
	Jump to the specified wave number. You would be wise to put a “limit=1” or “once=true” on this so you do not end up endlessly repeating the wave.

	Patrol
	SGROUP, MARKER
	Tell the squads to perpetually march from one marker to the next. You will normally wish to have MARKER be a table of marker names, which the squad will follow in the order listed. They will happily attack any enemy forces who wander into their range, but otherwise will continue their circuit so long as the Patrol action is in effect. You can add a “delay” to action if you wish to have the troops pause at each marker. You can also add action=”walk” if you wish for the squads not to do a attack-move between points. Non-military squads, (servitors) for example, will not move if you tell the to attack-move…

Markers, used on “Patrol” should have a proximity circle of at least 5, though 7 is best. Moving a squad is not an exact science, and squads will sometimes sit around if DOW does not think the have arrived at their destination marker. A proximity of 7 always seems to work.

Here is an example to

{ "Patrol","boyz", {"marker1", "marker2"}, action="walk"}

	ReSpawn
	GROUP, {marker}
	Spawn a sgroup or egroup that already exists and had been despawned. They will reappear in the same location that they were despawned at unless a marker or position is given. If you want to spawn a sgroup in another location, consider using “summon” to put them there.

	Scatter
	{Player/sgroup}, marker
	Keep the player from entering a proximity circle. On the map editor you can create “basic_markers” with names and “proximity” values. Any troops within the proximity will wander outside the circle. If the “marker” is a table of markers, the scatter will apply to all players specified on all the markers. There is a special option you can pass to this command: morale=true will destroy the morale of the troops it scatters.

	SeedRandom
	Number
	Seed the random number generator with a given number. This changes the random “sequence” that scar uses.

See the section on random numbers for more information on how/why to use this.

	Set
	Variable, value
	Set the variable to be the value given. The variable name must begin with “var_”. So “var_tim”, “var_ork”, and “var_this_is_a_test” are all valid variable names. But “var-tim”, “varork”, and “vAr_this_is_a_test” are invalid names.

The value can be anything from a list of players, numbers, names of squads, or anything else you can think of.

Variables are used as computed fields. The values of the variables are used if squirrely braces are placed around the variable name. For example, { “var_ork” } will put the value of the variable, var_ork, in the command or trigger in which it is used.

	SetInvulnerable
	{ egroup/sgroup}, {“on”/”off”}
	Turn on or off the invulnerable setting for the given entity or squad group.

	SetStance
	{player/sgroup}, stance
	Set the stance of a player or sgroup. If setting it for the player, only their squads are affected. Stances are Scar constants: STANCE_Hold, STANCE_StandGround, STANCE_Burn, STANCE_CeaseFire, or STANCE_Attack

	Squad
	Player, where-marker, sblueprint, sgroup
	Spawn a squad/vehicle at the “where-marker” and put it in the sgroup named. If multiple players are given or inferred, the squad will be given to each of them. If multiple where-markers are specified, the item will spawn in each location separately (once the previous squad has been killed). The spawn-location can be randomized.
There is a method=”kill|change|coexist” option which allows you to determine the fate of the squads belonging to one player if another player takes the point. “Kill” will kill the squad of the first player who took the point. “Change” will change the ownership of the current squad to the player who now owns the point. And “coexist” will allow both players to retain the squads they have been given.

You can have a “loadout=” option that specifies the number of squads to spawn in a squad-group. A zero specifies a “full” squad-group. A number large than the allowed allotment for that group will simply give you a full group.

You can have a “health=” option in case you need to spawn a squad and have it already damaged. Health should be a percentage, represented by a number between 0 and 1. So 1 would be full health, .5 is half health, etc.

	Summon
	{player/SGROUP}, Marker
	Take a pre-existing sgroup and teleport it to a new location on the map. There are some size limitations to the summon command, unless you use the fx=”instant” version. Use fx=”zap” if you want the squad to do something more spectacular than just vanishing. You can use fx=”instant” to make the summon happen instantaneously. The instant version will “summon” any size of critter.

	Teleport
	{Player/sgroup}, from_marker, to_marker
	Teleport any of player’s troops which are within the proximity of the “from marker” and send them to the location of the “to marker”

The to-marker, if it is a table, will go in sequence unless specified to be random.

	FX
	WHO, WHAT
	Perform a FX on the given marker, squad, or entity. The FX should be a string that looks like:
"data:Art/Events/eldar_unit_fx/warp_fx"
EZScar does not do error-checking to determine if the given FX is valid, so make sure you test your game before publishing it.

	Message
	Player, Message
	Write a message out for the player. Messages are queues up, and highest priority messages are displayed first. Options are:
duration=5 The duration the message will be printed
priority=0 The priority of the message. Higher priority messages will override lower priority ones.
timeout=30 How long the message will remain in the queue. If it is not displayed before this time, the message assumes it is no longer appropriate, and the message vanishes.
Messages can happen concurrently, so long as they are for different players. One player can only receive one message at a time. So, if you have a message, “player2 has hit you!” for player1, and “You hit player1!” for player2, these will be seen at the same time. But, if both of these were given to one player, they would display one after the other.

If messages are too long, they will appear to be cut-off. To do multi-line messages, either put them in a table, {“message1”,”message2”, etc} or put the “newline” character where you would like the message broken. “Message1\nMessage2\nEtc”

	
	
	

	
	
	

	
	
	

	
	
	

Modifiers:

There are a number of modifiers that can be added to most triggers/events.

	delay=#
	For most things, it means that there is a # seconds delay between checking or doing the event. For things like “Squad”, the delay is the time after the previously given squad dies before the new squad is spawned.

	limit=#
	Limit the trigger/event from firing more than limit times. Events that are limited will stop after they have successfully done whatever they are going to do “limit” times.

	Message=”text”
	Many functions (teleport, destroy, scatter, etc) will display the “text” message when they affect your troops.

	operator=and
	In a trigger, this can be used to determine if all the events need to be met. “and” is the default operator for most triggers/events.

	operator=or
	Specify that the operator is “or”. With “PointTaken”, for example, instead of saying that all the points must be taken for the action to fire, operator=”or” specifies that only one of the points specified must be taken for the event to fire.

Computed Fields
EZScar allows computed fields in commands. Computed fields must be in the squirrely-braces {}, and may have variables, or may refer to things in the map. You can use computed fields for any part of a command or trigger, so long as the computed field returns the correct “type”. A common use of this would be in composing a message to display to a player. You can do something like:

 { “JoinString”, “Your enemy, “, { “PlayerName”, { “OwnerOf”,”Relic }}, “, has taken the relic!” }
The above will create a string that looks like: “Your enemy, MadDog, has taken the relic!”

There are many places where computed strings can come in handy, but it is up to you to determine when they do. Computed fields will not really slow down things, and are very powerful. If a computed field only needs to be computed once for the whole game, you can specify optimize=”replace” and the computed value will replace the computation from that point onward (so it is no longer computed every time). Here are a list of computed field commands and their descriptions.
	Command
	Parameters
	Description

	Count
	{squad/entity}
	Returns the count of squads. With the parameter “what”, you can specify “exiting”, “items”, “list”, or “total”. Items, will give you a count of the number of squads within the squad-groups. With “existing”, you count how many squad groups have something existing in it. “list” will count the items in the list. “total” is basically the same as “items”, counting the total number of squads or entities in the groups specified

	Health
	Squad/entity
	Returns the health of the squad specified. 0 is completely dead. The upper limit is specified by the type of squad. A monolith, for example, has a very high health, a squad of nobs has a fairly high health, and a single grot has a very low health.

	JoinString
	List of things
	Create a string from the items listed.

	NumDeaths
	player
	Returns the number of deaths of the specified player(s)

	NumKills
	player
	Returns the number of kills of the specified player(s)

	OwnerOf
	Squad/entity
	Returns the player that owns the specified squad/entity

	PlayerName
	player
	Returns the string name of the players as they used in their single-player or multiplayer game.

	PlayerNumber
	Player
	Returns a number that represents which player they are in the game. This can be stored in a variable for later use.

	PlayerRace
	Player
	Returns the race of the specified players

	PlayersInProx
	Marker/squad/entity, proximity=num
	Returns the player numbers of any players in proximity to something. Markers have a built-in proximity (as entered into the game-editor), but squads and entities need to have one specified. If none is specified, 10 is used by default.

	PlayerType
	player
	Returns a string that is either “Human” or “AI”, that represents whether the specified players are computer controlled or not

	PlayerWon
	player
	Returns a Boolean value that tells whether or not the specified player(s) won the game.

	PopGathered
	player
	Returns the ork population gathered by the player specified

	PopSpent
	player
	Returns the ork population spent by the player specified

	PowerGathered
	player
	Returns the power gathered by the player specified

	PowerSpent
	player
	Returns the power spent by the player specified

	ReqGathered
	player
	Returns the requisition gathered by the player specified

	ReqSpent
	player
	Returns the requisition spent by the player specified

	Score
	player
	Returns the current score for the player specified

	SquadMorale
	squad
	Returns the morale of the squad specified. This is a number between 1 and 0, with 1 being full and 0 being completely broken.

	SquadStance
	squad
	Returns the stance of the squad specified.

	StartingPosition
	Player
	Returns the starting position for the player(s) specified. This can be used instead of most markers/locations. For example, you may want to have something special spawn at the starting position of a player if they take a point. You can create a rule like:

CreateRule({“PointTaken”, ”anyone” , ”relic”},{“squad”, { “OwnerOf”,”relic”}, {“StartingPosition”, {“OwnerOf”,”relic”}, ”necron_restored_monolith_squad”, “SpecialGift”, method=”change”})

	StructuresLost
	player
	Returns the number of structures the player has lost

	StructuresRaised
	player
	Returns the number of enemy structures the player has raised

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Variables
Variables are a special form of computed field. Like all computed fields, they must be enclosed with squirrely-braces when the value is going to be computed. There are specific times when you will not want them to be enclosed in braces, namely, when you are setting a value. Variable names are strings (enclosed in quotation marks) and must always start with var_. Here are some examples:
CreateRule({“PointTaken”,”anyone”,”relic”},
{ { “Set”, “var_relic”, { “OwnerOf”,”relic” } },

 { “Squad”, {var_relic},{“StartingPosition”,{“var_relic”}},

 "eldar_squad_avatar_stronghold_sp", “SGroupName”, method=change }

})
The above example, when a relic has been taken, will give an avatar to the owner of the relic, and put it at their starting location. Notice that in the “set” command, the name of the variable is not put in braces. If it were in braces, the value of the variable would be inserted instead of the name of the variable, and you would get something looking like:
“Set”, “player1”, “player2”, which would put an error on your console (press ctrl-alt-~ to see the console)

CreateRule({“PointTaken”,”anyone”,”relic”, limit=1},
 { “Set”, “var_relic”, { “OwnerOf”,”relic” } })

CreateRule({“Compare”,{“var_relic”},”<>”,””},

 { “Squad”, {var_relic},{“StartingPosition”,{“var_relic”}},

 "eldar_squad_avatar_stronghold_sp", “SGroupName” }

 })
The above example will do a similar thing as the first, except that when the relic is taken by another player, the original player still gets the avatar. This sort of thing can be used when you want a race for the relic, and there is no prose for second place.
Random Numbers

Scar uses very awkward random numbers. The way SCAR works is by having every computer in a multi-player game executing the same code. This means that every computer involved must come up with the same random number as the other computers, otherwise you get a “Sync error.” A Sync error simply is what happens when one computer is doing something different than the other computers.

What SCAR does, then, is to use the same “random seed” for every single game. All things the same, if you generate a bunch of random numbers, they will be exactly the same every time. Thus, if you make a “random map”, it is exactly the same every time you play it. Very depressing. But also easily worked around.

What you need to do is have something that will have a different result, from which you can “seed” the random number generator. Every computer involved will use the same number, and then everything is OK. The simplest thing to do is to have a “trigger” early on in your game that causes the random number seed to fire. Then you fire it off with some value.

For example, in one game, we had a bunch of stormboys fly into an arena and blow off a “nuke” suicide-bomber style. The game then calculated the health of the remaining storm-boys and used that to seed the number. You can do something easy like waiting until some squads wander into the proximity of a circle that someone has to wander through before the game progresses too far. Then you count the squads, their health, etc of whatever triggered it (or other players on the map). For people who do exactly the same thing every time, this might not be too random. But it only needs to be slightly different to make a big difference in the map. Good luck.
User Defined Functions

User defined functions can be used through the “Function” command (in DoItNow or CreateRule). This allows you to do things that are more complicated than EZScar can do, or to allow you an extra set of complexity for a special map.

User defined functions should be used with caution. The follow standard lua 5.0 programming schemes, and have the standard SCAR additions. If you do not know what those are, then you probably do not want to have a user defined function.

There is a lot of programming help for scar around, but it is usually scattered around. Your best bet, since you are holding a copy of ezscar, is to try to read it over a few times to dredge up some examples of what you would like to do.

To use a “user defined function”, it must be defined. Usually this should be done before or after the “localinit” function. Then you call it through something like:
CreateRule({“PointTaken”,”any”,”relic”},{”Function”, name_of_custom_function })

EZScar 1.0 documentation
Main Variables:

Below are a number of the variables set in Scar1. These control the function of the game.

g_GameType = "invasion"

This is a placeholder. It was originally intended to be a way to control the end-game triggers and some of the gameplay. We realized it was very limited in capability and has been replaced.
g_debug = false

g_debug true/false If set to true, the "enemy" bases will be owned by player 1. Do this to test base building. Makes a lot of game-testing go smoother.
g_DestroyHQ = false

g_DestroyHQ True|False If you destroy all the HQs in a base, does the base self-destruct? When a base is destroyed, all the squads that spawned for that base will also destroy. There is a small “issue” with this. Some squads, notably the IG machine-gunners, change squad-types when they “deploy”. If they have changed, they will not die instantly like the rest of the squads, but will die as soon as they switch back. When we killed them instantly, it had very peculiar results.

g_MapConfiguredFor = 3

The number of players the map is designed for. The difficulty is automatically adjusted for the number of players based on this. For example, if the map was configured for 2 players, but 6 human players join the game, the squad-caps will be multiplied by 3 for all the opposing vplayers.

g_AutoRecompute=true

Automatically recompute the map difficulty based on the number of players who joined. This works in conjunction with g_MapConfiguredFor above.

g_max_locations=14

g_max_locations=# The number of possible locations for the enemy to spawn at. There should be basic_markers for every location. The markers should be like: 1-hq-1, 1-turret-1, 1-military-1, 1-minefield-1, 1-power-1 Where the first number is the "location" and the second number is an incremantal count. 12-turret-5 is the fifth turret at the location number 12. g_max_locations is used when the keyword “random” is used instead of a location number for a wave. A random number is generated from 1 to g_max_locations, and used for the starting location.
g_cycle_webways=true

--If using the eldar and webways, each successive wave comes from the next webway. If set to "false", the waves will come from one webway until that one is destroyed then it will move to the next. This should be set for each individual vplayer, and will be when Scar 2.0 has vplayer support in it. But for the Scar1.0 version it is set for the whole game. Using this can change how the eldar’s strategy appears.

g_WaveDelay= {

60, 30, 20

}

g_WaveDelay = an array of delay times before each wave. If not enough times are given, the last time listed will be used for all the remaining waves. The above example gives 60 seconds before the first wave is spawned. Then, when that wave is destroyed, there will be a 30 second delay before the second wave is spawned. A “wave” in this context, means the buildings from which the squads are produced.

g_GamePlay

This is where the virtual players for the waves (waves of vplayers) are defined.
· The first number is the wave during which the vplayer is spawned.
· Second in the list is the Race. Race-names may be one of: "chaos_marine_race" , "eldar_race" , "guard_race", "ork_race" , "space_marine_race" , "necron_race" , "tau_race", “Sisters_race”, “Dark_Eldar_race”, or "default". A race of “default” will use that was specified for player2 (the enemy) the choosing of map and adding of players.

· The third item in the list is the starting location. The keyword “random” specifies that a random location from 1 to g_max_locations will be calculated and used. Every location must have a number of markers where the various buildings will be spawned. For example, for location 1, you should have things like: 1-hq1, 1-hq2, 1-military-1, 1-military2, 1-military-3, 1-military-4, 1-turret-1, 1-turret-2, 1-turret-3,etc. You may use the following: hq, military, turret, power, minefield, webway. Each building could potentially have up to 20 markers. There is no physical location constraints on the location of these markers; they do not need to be in the proximity of the HQ. For webways, for example, you may have an elder HQ in one location, but the webways scattered around the map.
· For the third item, you can simply put a marker (“wave1Spawn1”) and a compact base will spawn in that location. If the last character is “r” then the base will reverse it’s direction.

· The fourth item is the way that the enemy squads appear. The three values are “wave”, “trickle”, and “wave-trickle”.
· Wave: The squads fill out their squad-cap every time. Usually for waves, you want the re-spawn time to be in longer increments. This is often how the eldar would come out, collecting their forces and then jumping through a webway.

· Trickle: The squads appear one at a time. Usually you will have the delay be fairly short. This simulates the standard AI in DOW. Generating one squad at a time.

· Wave-trickle: The first bunch of squads appear in one wave. But after that, they trickle out. This is the most common approach. It gives the AI a good start in life but is not overwhelming.

· Difficulty – this is a value from 1 to 3 that represents the difficulty of the squads that are produced. A difficulty of 3 gives you squiggoths, while a difficulty of 1 gives you slugga-boys. Any value except 1, 2, or 3 will result in Scar errors.

· Squad cap: This is the cap for the vplayer for people squads. There is a different cap for vehicles.
· Vehicle cap: This is the cap for the vplayer for people squads. There is a different cap for people.

· Spawn Delay: This is the delay in seconds between each wave or trickle. 30 – 60 seconds is often good for waves, while 5-15 is good for trickles. Usually it is better to keep the squad and vehicle cap lower, and decrease the spawn delay. This keeps the overall number of squads down, while still keeping the number of things to kill at a relatively decent amount. Of course, the distance between the spawn-point and the battle plays an important factor.
Example:

-- g_GamePlay = { #wave, race, #location-on-board, trickle/wave, #difficulty,#squad-cap, #vehicle-cap, #Timer }
g_GamePlay=
{
1,"ork_race","1","wave-trickle",1,10,3,10,

2,"tau_race","2","wave-trickle",1,10,10,10,

2,"tau_race","3","wave-trickle",1,10,10,10,

3,"chaos_marine_race","1","wave-trickle",2,15,8,10,

3,"chaos_marine_race","2","wave-trickle",2,15,8,10,

}

Wave Actions

--g_WaveActions

There are three timeframes. BEFORE a wave (while the countdown timer is occuring)

DURING a wave (while there is a single virtual player still alive)

"NOT" which means all times except "during" the wave specified.

and ALWAYS which happens during all waves

then, there are various commands that can be done.
g_WaveActions = {

"before|during|not|always",wave,"base","player","location","race|default",5

"before|during|not|always",wave,"teleport","player|enemy","source-marker","destination-marker",0,

"before|during|not|always",wave,"destroy","player|enemy","source-marker","squad-to-destroy",10,

"before|during|not|always",wave,"save","player|enemy","source-marker","squad-to_save",0,

"before|during|not|always",wave,"squad-once","player|enemy","destination","squad-blueprint",5,

"before|during|not|always",wave,"squad","player|enemy","destination","squad-blueprint",5,

"before|during|not|always",wave,"building-once","player|enemy","destination","building-blueprint",5,

"before|during|not|always",wave,"building","player|enemy","destination","building-blueprint",5,

"before|during|not|always",wave,"fow","on|off","marker|egroup|sgroup|","",0,

"before|during|not|always",wave,"fow-once","on|off","marker|egroup|sgroup|","",0,

"before|during|not|always",wave,"restrict-ai","enemy","on|off","",0,

"before|during|not|always",wave,"message","","[put your message here]|random","",0,

"before|during|not|always",wave,"command","attack","squad|", "squad|marker|player|", 30,

"before|during|not|always",wave,"resources","player|enemy","req|power|ork", "#number", 30,

"before|during|not|always",wave,"resources-once","player|enemy","req|power|ork", "#number", 30

"before|during|not|always",wave,"grant_research","player|enemy","research", "#number", 30

"before|during|not|always",wave,"revoke_research","player|enemy","research", "#number", 30

"before|during|not|always",wave,"base","player{1,3,4,5,6,7}|enemy","location#", "race", 30

"before|during|not|always",wave,"compact-base","player{1,3,4,5,6,7}|enemy","location#", "race", 30

"before|during|not|always",wave,"reverse-compact-base","player|enemy","location#","race", 30

g_Bonus

Give the player something when a point is captured.

The first part is a point that is an "egroup" name (created with the map editor) containing a point (strategic/critical/relic).
Then comes the "who gets it" part. ENEMY, PLAYER, or ANY The Player is of the form “Player1” or “Player2”.
The "gift" is an "egroup" that exists at the beginning of the game and owned by the world, a squad/vehicle blueprint or one of the keywords ENABLE, DISABLE, PREFER-ENABLE, or PREFER-DISABLE (each in lower-case)

Enable- Enable a wave-actions rule. It is disabled until it is enabled.

Disable-disable a wave actions rule. It is enabled until it is disabled.

Prefer-Enable – For when there are multiple Enable/disable. If there is any chance of it being enabled, then enable it.

Prefer-Disable- For when there are multiple Enable/disable. If there is any chance of it being disabled, then disable it.

To have multiple gifts when a point is taken, make another line with the same point, for example:
"SpacemarinePoint", "player","SpacemarineBuildings", "",1

Give the player who takes the point the egroup "SpacemarineBuildings"

"SpacemarinePoint", "any","space_marine_squad_predator", "gifts",0.9,10

Give anyone who takes the point a predator at .9 strength. When that is destroyed, give him another one 10 seconds later

"CivilianPoint","player","guard_squad_civilian_male_a","ToSave",0.3,60

 Spawn a civilian that needs saving (the ToSave group-name will be used in the "save" WaveActions)

HEALTH is the % health an item is spawned with. 0 is dead, 1 is fully-alive. 0.5 is half-dead

The timer is how many seconds after the previous one was destroyed before the new one is re-spawned (for vehicles/squads)

g_Bonus = {

--point,"player|enemy|any", "egroup|sgroup|squad|enable|disable|prefer-enable|prefer-disable|endgame|kill-vplayer","groupname", health|rulenum|vplayer, timer

--
"GiveTank","player","space_marine_squad_predator_advance_sp","",1,10,

}

The End Game Function

This is a function telling the computer what to do when the end of game rolls around. Basically, at the end of game happens, all the other SCAR code stops functioning and this gets called once per second. You can do a number of different things. In Scar 2.0, this should be replaced by doing NIS stuff. It is much nicer.

function end_game()

--This is a function that tells what to do for the end of game

--g_end_time begins as 1 and counts upward, 1 for each second

if g_end_time <= 1 then

 W40k_Letterbox(true,2)

elseif g_end_time <= 3 then

W40k_ShowSystemMessage("Arggg! You have beaten me!")

elseif g_end_time <= 6 then

W40k_ShowSystemMessage("But I will be back again!")

elseif g_end_time <= 9 then

W40k_ShowSystemMessage("And then... Beware!")

elseif g_end_time <= 12 then

--This last one just pauses for a sec before the end of game

W40k_ShowSystemMessage("")

W40k_Letterbox(false,2)

else

--Always end with killing the player2 just in case...

Player_Kill(g_Player2)

end

end

Custom races:

EZScar virtual players are basically controlled by a big list of all the squads and buildings for the given race. These lists are specifically crafted to tell what type of building or squad it is, and when to use it. To give you better functionality, you are allowed to create your own custom races. This could be so you can use the critters from a mod, or it could that you want to simply mix some bloodthirsters in with your slugga-boys. You may choose to use a normal race, but to specify a focused selection of artillery or melee squads. The choice is up to you. Mix and match, limit it to one squad-type, the world is yours to command.

Custom Buildings:

The building-array lists the:

1. building (entity) blueprint: This cannot be made up. It has to exist as either a part of the mod you are playing with, or the main DOW game.
2. the type of building: These are defined in EZScar as being “hq”, “military”, “power”,”turret”,”minefield”, or “webway”. During the generation of a base, the EZScar program will search the map for basic_markers (put there in the map-editor) with a name like 1-hq-1. The first 1 is the “location”. The hq is the type of building, and the last number is the first, second, third building of that type to be placed on the map. EZScar will stop at a maximum of 20 of any type. Usually only minefields or turrets will use that many of them.
3. The limit to how many of this building will be dropped. For example, we may want to spawn a research building as a type “military”, but only have one of them. We may have a barracks, and want up to three of those. EZScar will cycle through and put one of each item. Then it will continue to cycle through the types of buildings looking for more of that type it can put down until all the markers for that type on the map have been used up. Then it switches to the next type of building until it has filled up all the markers it is able to on the map.

-- Here you can make your own mix of races

-- One building-set that needs to be destroyed

-- and your own selected bunch of squads that will be spawned

-- This gives you a lot of variety at your disposal

-- custom1_buildings= "Building_blueprint", "type", HowManyPerBase_drop#

custom1_buildings =

{

"ork_hq","hq",6,

"chaos_temple","military",3,

"ork_mek_shop","military",3,

"chaos_temple","military",2,

"eldar_webway_gate","webway",5,

"guard_mines","minefield",20,

"necron_plasma_generator","power",10,

"necron_turret","turret",30,

"necron_turret_missile_sp","turret",30
}

Custom Squads/Vehicles

Here is where you get to define your mix of squads that your virtual player will send against you. Besides separating the difference of vehicle/squad, you get to define how many of them occur during a particular difficulty. They are spawned round-robin. So your first few seconds may see all your commanders and stuff come up, and then the next 5 minutes may be the plethora of small guys until the bunch is complete. Then the counters are cleared and it starts from the beginning. Think of the numbers here as participating in a percentage. You may have 5 squads, each having 2 of them per group. But if one of your squads has a quantity of 20, then you will have 20 of those squads to the 3 squads each of the others. Play with the numbers. It makes sense pretty quickly. Remember, however, that the counters are reset over time. This means that if your capital squads have not been killed yet, you will get more of them in the new batch. It is easiest to have an over-all large number of squads for every difficulty level. That keeps down the potential for having multiple squiggoths after you at the same time.
1. The first item in the list is the squad/vehicle blueprint. This comes from a mod or is a part of the normal DOW.

2. The second part is either “squad” or “vehicle”. Those are the only things that EZScar understands at this time.

3. The number of these that spawn per group for difficulty 1.

4. The number of these that spawn per group for difficulty 2.

5. The number of these that spawn per group for difficulty 3.
custom1_squads=

{

"space_marine_squad_grey_knights","squad", 1, 0, 1,

"space_marine_librarian_evil_sp","squad", 1, 0, 1,

"guard_squad_inquisitor","squad", 1, 0, 1,

"space_marine_squad_sp_metiel","squad", 1, 0, 1,

"chaos_squad_horror","squad",0,2,0,

"chaos_squad_bloodthirster","squad",2,0,1,

"chaos_squad_daemon_prince","squad",2,0,1,

"chaos_squad_possessed_marine","squad",1,0,0,

"chaos_squad_obliterator","squad",0,2,1,

"space_marine_squad_whirlwind","vehicle", 0, 1, 1,

"chaos_squad_defiler","squad",1,0,0,

"eldar_squad_seer_council","squad",1,0,1,

"eldar_harlequin_squad","squad",3,0,2,

"eldar_squad_dark_reapers","squad",0,1,1,

"eldar_squad_rangers_advance_sp","squad",0,2,1,

"guard_squad_assassin_advance_sp","squad",0,2,2,

"guard_squad_psyker_advance_sp","squad",0,1,0,

"necron_night_bringer_squad_advance_sp","squad",1,0,1,

"necron_restored_monolith_squad","vehicle",0,1,1,

"ork_flash_gitz_squad","squad",0,1,2,

"ork_squad_stormboy_advance_sp","squad",2,0,1,

"ork_squad_mek_boy_advance_sp","squad",1,0,1,

"tau_ethereal_squad_stronghold_sp","squad",1,0,0,

"tau_greater_knarloc_squad","squad",1,0,1,

"tau_kroot_hound_squad_advance_sp","squad",2,0,1,

"tau_hammerhead_gunship_squad_advance_sp","vehicle",0,1,0,

"tau_krootox_squad","squad",0,1,1,

"eldar_squad_wraithlord","squad",1,0,0,

"guard_squad_ogryns_advance_sp","squad",2,0,0,

"necron_lord_destroyer_squad","vehicle",0,1,1
}

Program Notes In Progress
Make a custom trigger/event
Fire off a rule that passes in whatever parameters

One parameter is a function

It goes to a custom function that returns true/false

It can do anything/check anything.

Should print an error if the function does not return true/false

Translate anything except False/nil as true

Print a message if type(answer) ~= boolean
If something does not exist (a building is destroyed, an sgroup has not yet spawned, etc) skip it from the patrol list (do not remove it, it may be created later)
Can we use percentage of an attack force (when they retreat) of the whole sgroup?

Tyranid map

Get a counter/percentage (Number saved) working

Tyranid AI

Keep “followers” near the leader
Have various markers that they “retreat” to

Have various “targets” they will attack.

Have them attack until damaged to 50%, then retreat to the next marker

Once they recover, they attack the next target in the list.

If they do not have any targets, they will “patrol”

If no markers, they will not retreat, but will attack

Do it through a “Patrol”

Allow a patrol to have markers, egroups, and sgroups.

If the egroup or sgroup belongs to another team, attack it.

Use SGroup_GetTeams

Stop attacking if our forces are dwindled to a percentage

Set the base number when the attack command is called

Have that percentage applied to a patrol command

If the egroup or sgroup belongs to our team, defend it

Use SGroup_GetTeams

We may want to circle around the egroup/sgroup:

Cmd_MoveToPosOffset(String groupName, ScarPosition position, Integer offset, Real distance)
If there are any enemies around the egroup/sgroup, attack

SGroup_CanSeeSGroup(String sgroupname, String targetegroupname, Boolean all)
Make a group of all the squads near the point we are defending
Player_GetAllSquadsNearPos(PlayerID p, String sgroupName, Position pos, Real proximity)
Way to say, “You won in 15 minutes, a new record”

World_GetGameTime(Void) – game time in seconds
· Track time it takes to play and store in your profile

· Just have the time for now. They can say “a new record” over teamspeak

Have a trigger for end-game (for nis)

Have a trigger for start-game to get NIS going immediately

Basically able to pause waves and timers until NIS ends

Add the gun firing to our nis script. Try to have it shoot at a marker, not a building

Will shoot at anything owned by someone else.
Will not shoot at a marker

Have a campaign.scar file

Contains information about how the honorguard works

Every HG item has individual rules:

When dies,

remove from honorguard

respawn immediately

Respwan after delay

Respawn if some cached in HG

nothing happens

Some squads always remain as part of story-line

Banned from some maps (effectively all other maps allowed)

Allowed for some maps (effectively all other maps banned)

Starting health (map specific)

Players have individual HG or shared?

If shared, if any dies, removed from HG,

If shared, if all die, remove from HG

Max Number if entities allowed in HG

Max Cached for that blueprint in HG

(Optional, can have unspawned in HG to replace when some die)

Store information in a profile.

Generate a variable-name from the player-names

Use the map_name

Variable-name

Playerhash[mapname][variable]=

Auto store saved items

Map “completed” flag

Auto-store honor-guard
Has a list of all the maps & their order

Lists possible scores for each map

Lists prizes you get from each map based on that map score

Included from the template file

Retrieve information in a profile
Set objectives

Do something like:

SetObjective({objective},{success-trigger},{failure-trigger})

SetSubObjective({objective},parent,{success-trigger},{failure-trigger})

Where the objective contains a list of points to ping

The ping points are created during the objective_add

We can ping markers or entities, but not squads (that move)

Objective_PingPosition(Integer title_id, ScarPosition position, Boolean is_looping, String ping_type
Primary/secondary objective

Util_WXP_ObjectiveSubCreate(LuaTable objectiveTable, Integer parentObjectiveID)
Util_ObjectiveFail(Integer titleid)

Util_ObjectiveCreate(LuaTable objectiveTable, boolean primary)

Util_ObjectiveComplete(Integer titleid)

--If we want to have a ping associated with a squad, we can remove and add it at specific intervals

Objective_PingRemove(Integer title_id, Integer ping_id)

Objective table= obj_table = { title_id = 400009, short_desc_id = 400010, help_tip_id = 400011 }
Using show_ratio and update_ratio, track various win-conditions. Waves, people saved, etc. Have option to have them displayed

UI_ShowRatio("mytest", g_Player1, 18010016, 1, 3)
In the ucs file something like: “people saved (%1%/%2%)”
Have triggers on countdown/count-up timers

--Show it in the console

UI_ShowCountdown(18010016, 20)

--Have it running in the background

Timer_Start(18010016, 20)

--We can check how many seconds it has left

print(Timer_GetRemaining(18010016))

CreateSGroup, player, [not] blueprint, groupname
In the middle of the “NOT” part
CreateEGroup

Copy SGroup stuff when “NOT” part finished

Require something before map starts
Check stance.

If hold-ground stance then…

Count-up/down timer that can trigger something else

If stance is hold-fire and in prox of enemies, timer goes for 15 seconds

Then they convert (change to friend player, or to human team)
Can we play nis during this time – gk converting . scripture…

Keep gk morale up

CanConvert(player/sgroup, {vplayer/player/sgroup, converting_nis=, converted_nis=})

Custom checks – our own functions
Set ownership of egroup to player

Coded. Need to try it to check for bugs.

If we give too many or not enough parameters on a line, break more graciously
assert(loadstring(g_testvar))()

ForcePlayer
Set player2 to be computer

Shuffle human players to other places

Set race of computer

Optionally set race of humans

Se what happens if various people have different profiles in multiplayer game

If the command is mis-typed, it gives us a nil value, then crashes.

Deal with it gracefully

Example: SquadExists instead of SgroupExists

Example: sgroupexists instead of SgroupExists

If there is an “operator” in action_who, put it into wholist also

Done

Check all actions/triggers to make sure we can have operators in the player or where tables

Add soulstorm races

Get buildings from Philip

Walk through compact bases on Philip’s computer

Make sure races are in all race-lists

Switch to centralized

get_squadlist(race)

get_buildinglist(race)

Add flying craft to other races

Remove them if the blueprint does not exist

Make one of the generators for the compact-base be a thermo-generator (drop a slag depo first)

Add ability for wave to spawn thermo-plant (slag), relics, and points. At “locations.”

Add capability so that you can have a player type be

 {OwnerOf [sgoup|egroup] }
Should we have a

{ PlayerAt, MARKER } person also?

Have vplayer_alive func

If a rule is being added but cannot work (hard-error), do not add rule
On routine to check that the type is correct, snip off just the first 4 letters into temp

--For name type [MARKER1, etc]

Have an ability to queue up events (destroy, message, etc) that we keep trying until completed. (The functions return a true/false if completed on everything? If false, generate a group with a random name-number combo with all the affected items, and dump it in the queue. Keep trying with a timeout…)
Try to switch over to allow team based permissions (so we could have 3-way or 4-way onslaught, etc). For all vs 1 maps, “enemy” player still works. Should we have a “friend” AI?
Can we set teams and players during multi-player setup? That way we can force player 2 to be the enemy regardless…

Have variable that, if set, stops things from happening (used during NIS at beginning)

Cpu_Enable(false) to turn off enemy while nis is going
Have game information

Game {}

WinCondition:

Annihilate

WaveEnd

Save=#

DestroyHQ

MapName (Printed when game begins)

Gametype=Assault, Onslaught, CTF, etc
Campaign=True/False

PreviousMap=mapname|{mapname,…} (searched with previouslysaved/earned)
Team {}

PlayerNames = Player_GetDisplayName(PlayerID player)
LevelsCompleted={level1,level2,…}
Player{playername}{level-name}={

ObjectivesComplete

HonorGuard – if it dies on one level, does not travel with you
SavedItems
}

Can we use this for multi-player human (no enemy) games?

One-time actions vs multiple-time actions

Will need “and, or, and not”

not PreviouslyCompleted or not previously_completed…

Always start with “or” or assume “and”

Allow “not” to start the list

Player, team, enemy

IF
Point is taken

Squad Exists

Building exists

Player Owns

Require [Blueprint]

Squad is dead

Building is dead

Beforewave
Duringwave

Not during wave

Always

Proximity

Vplayer dead

Timer [$|Random]

saved
StartGame

PreviouslySaved [blueprint]
PreviousObjective [goalname]
PreviouslyCompleted [levelname]

TimerFinished

Then

SetTimer [TimerName], [#,random]

DoNIS [NIS], pausegame
LoadProfile

SaveProfile

SetObjective

Uncapture
SetRace (player, race)
Restrict [player|enemy], [restriction] (can restrict buildings, squads, AI-type,etc)
Unrestrict [player|enemy], [restriction]

Resources

MakeInvulnerable

ChangeGametype

KillPlayer Player|enemy player#|vplayer#
Endgame [NIS]
Command sgroup|egroup command

Spawn building|squad blueprint

FOW reveal marker|squad|entity
Teleport
Save [blueprint|sgroup|default], [tag]
Destroy

Reset waves (start at 0)
End wave
Reset_saved (reset saved count to 0)

DestroySGroup
DestroyEGroup

CreateSGroup

CreateEGroup

AddVPlayer

Base [compact] [location|default] (default will create a compact base at the players start position)
Despawn [sgroupname|egroupname]
Message
Grant-Research [all|researchname]

HonorGuardPlus [blueprint]
ObjectiveComplete [player|players] , objectivename
Change Ownership

For “Player”, use “players” (with an s) to refer to all players

If we use “player” in an event refer to the player who triggered it

We can use player1,2,3,4. If the given player does not exist and the trigger is needed, then roll it around to the next player that does exist.
Can use team1, team2, team3, etc. instead of player|enemy…
Have a mission title set

Util_MissionTitle(LocString loc_str)

TestIntel = function()
conv = CONVERSTATION
print("TestIntel START")
for i,v in ipairs(conv) do
CTRL.Actor_PlaySpeech(v.speaker, v.message)
CTRL.WAIT()
end
print("TestIntel END")
end

conversation = {
{speaker = ACT.Gabriel, message = 1000110},
{speaker =ACT.Gabriel, message = 242000},
{speaker = ACT.Gabriel, message = 1000110},
{speaker =ACT.Gabriel, message = 242000},
}

function OnInit()
CONVERSTATION = conversation
Util_StartIntel(TestIntel)
end

